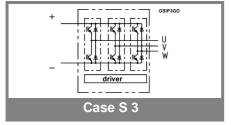

SKiiP 232GD120-3DU

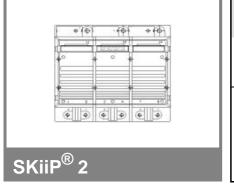
6-pack - integrated intelligent Power System

Power section


SKiiP 232GD120-3DU

Power section features

- · SKiiP technology inside
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- 1) with assembly of suitable MKP capacitor per terminal


Absolute Maximum Ratings		s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	200 (150)	Α			
Inverse diode						
I _F = - I _C	T _s = 25 (70) °C	200 (150)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	1440	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	10	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

	•							
Characteristics T					T_s = 25 $^\circ$	C unless	otherwise	specified
Symbol	Condition	ons			min.	typ.	max.	Units
IGBT	1				ı			
V_{CEsat}	I _C = 175 A	, T _i = 25 (1	25) °C			2,6 (3,1)	3,1	V
V _{CEO}	$T_i = 25 (12)$					1,2 (1,3)	1,5 (1,6)	V
r_{CE}	$T_j = 25 (12)$	25) °C				7,5 (10)	9 (11,5)	mΩ
I _{CES}	$V_{GE} = 0 V$, V _{CE} = V _{CE}	S,			(10)	0,4	mA
	$T_j = 25 (12)$	25) °C						
E _{on} + E _{off}	I _C = 175 A	, V _{CC} = 600) V				53	mJ
		$C, V_{CC} = 90$					93	mJ
R _{CC' + EE'}	terminal cl	terminal chip, T _i = 125 °C				0,5		mΩ
L _{CE}	top, bottor	m ´				15		nH
C _{CHC}	per phase	, AC-side				1,4		nF
Inverse o	diode							
$V_F = V_{EC}$	I _F = 150 A	., T _j = 25 (1	25) °C			2,1 (1,9)	2,6	V
V_{TO}	$T_j = 25 (12)$					1,3 (1)	,	V
r _T	$T_j = 25 (12)$					5 (6)	6,8 (7,8)	mΩ
E _{rr}		$V_{CC} = 600$					7	mJ
	,	$C, V_{CC} = 90$	00 V				9	mJ
Mechani	cal data							
M _{dc}		als, SI Unit			6		8	Nm
M _{ac}		als, SI Unit			13	0.7	15	Nm
W	SKiiP [®] 2 System w/o heat sink				2,7		kg	
W	heat sink					6,6		kg
			P16 hea	it sink; 29	95 m³/h)	; " _r " refer	ence to	
temperat	•	sor			ſ		0.400	1.00.0
R _{th(j-s)I}	per IGBT						0,129	K/W K/W
R _{th(j-s)D}	per diode	_					0,375	
R _{th(s-a)}	per modul						0,036	K/W
Z_{th}	R _i (mk/vv)	(max. valu	es) 3	4	l 4	tau 2	_i (s) 3	4
7	14	2 99	ა 15	0	1 1	∠ 0,13	0,001	1
Z _{th(j-r)I}	41	289	45	0	'1	0,13	0,001	1
Z _{th(j-r)D}	11,1	18,3	3,5	3,1	204	60	6	0,02
$Z_{th(r-a)}$	' ', '	10,5	3,3	٥, ١	204	00	U	0,02

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

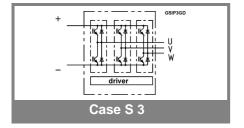
SKiiP 232GD120-3DU

Absolute	Maximum Ratings T _a	_a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S1}	stabilized 15 V power supply	18	V	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, r.m.s., 2s)	3000	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f_{sw}	switching frequency	20	kHz	
f _{out}	output frequency for I=I _C ;sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

6-pack - integrated intelligent Power System

6-pack integrated gate driver

SKiiP 232GD120-3DU


Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- · Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- · Interlock of top/bottom switch
- Isolation by transformer
- IEC 60068-1 (climate) 25/85/56

Characte	eristics		(T _a = 25 °C		
Symbol	Conditions	min.	typ.	max.	Units
V _{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	410+39	410+390*f/f _{max} +3,6*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	300+28	300+280*f/f _{max} +2,6*(I _{AC} /A)		
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time			1,5	μs
t _{d(off)IO}	input-output turn-off propagation time			1,4	μs
$t_{pERRRESET}$	error memory reset time	9			μs
t_{TD}	top / bottom switch : interlock time		2,3		μs
l analogOUT	8 V corresponds to max. current of 15 V supply voltage		200		Α
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 13/20/22/24/26			5	mA
V _{OI}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		250		Α
I _{TRIPLG}	ground fault protection		58		Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	900			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

